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Achieving a molecular understanding of biological processes will A ncPNA
require quantitative tools for regulating gene activity with high PL
spatial and temporal resolution. Such methods will allow, for o\ 2'-OMe-RNA L
example, real-time functional studies of cellular proteins. One (_60S » e~ y oY
promising approach involves reverse complementary “antisense”
oligonucleotides, such as “mopholinédsind negatively charged gene expression “on”
peptide nucleic acids (ncPNA%jwhich down-regulate target genes
in model organisms. Short ncPNAs bind tightly and sequence 263
specifically to complementary mRNA, possess a nuclease-resistant 40S> Ve
pseudopeptide backbone, and, when targeted to translation initiation - ‘ AUG

sites, block ribosomal protein synthesis. Thus, the application of ncPNA ion “off”
light-activated “caging” strategiés ncPNA would provide an “on e ik
— off” switch for controlling gene expression (Figure 1A). It was 2'-OMe-RNA 3
shown previously that attaching sterically bulky photolabile groups B
to oligonucleotides has modest effects on duplex formattderein,
we report the synthesis, characterization, and in vivo application CCACAGCAGCC CC TCCATN~ p|. 5-TTCAAGTGTAGGGGTGCC-N
of two light-activated ncPNAs whose hybridization to mRNA is GUCGGGGAGGUA—Q 3.cacaucce—— st
conditionally blocked by a complementar-@Me RNA strand Caged PNA-chd Caged PNA-boz
(Figure 1B). B

Efforts to photomodulate oligonucleotide function within cells o B
and embryos have met with limited succéssMonroe and co- o s,o “HCS\ 0 )ol\N _____
workers demonstrated the photoregulation of GFP expression in - N9 C(N/\d\o H
Hela cells by labeling a DNA plasmid with multiple 1-(4,5- o \—gj'" x Ney
dimethoxy-2-nitrophenyl)ethyl (DMNPE) grouﬁ$n other pioneer- Negatively charged PNA (ncPNA) Photocleavable linker (PL)

ing work, Ando et al. labeled mRNA and DNA constructs Figure 1. (A) Controlling gene expression using negatively charged peptide
approximately once every 35 bases with a 6-bromo-7-hydroxycou- nl?cleic ‘acid (ncPNA) gatgtached pto complemgnta?yon/leyRNAgviapap

marin-4-ylmethyl (Bhc) protecting grod’p_(:aged mRNA and DNA photocleavable linker (PL). Photolysis promoted ncPNA binding to mRNA,
constructs enabled the photomodulation of GFP expression andthereby blocking protein synthesis in zebrafish embryos. (B) Structures of

subsequent study of Lhx2 in zebrafish forebrain grotrsing a caged PNA-chd, caged PNA-boz, ncPNA, and PL.
similar statistical labeling approach, Friedman et al. reported a light-
activated small interfering RNA (siRNA) that modulated GFP
expression 2-fold in HeLa celfsin these examples, heterogeneous
mixtures of molecules labeled with multiple blocking groups
required greater exposure to UV light and resulted in poor
spatiotemporal resolution and photoconversion. To address these
problems, we recently developed sensitive methods for regulating g
oligonucleotide function using a single photolabile blocking gr8up.

In the present study, we attached an amine-terminated, 18-mer
antisense ncPNA (Active Motif, Carlsbad, CA) targeting the Kozak
sequence and start codon of zebrafistordin mMRNA to a thiol-
terminated 12-mer'20Me-RNA sense strand (SRNA) via a 1-(5- - 5 T ted liaht i . ative 24 hof zebrafish

N-maleimidomethyl)-2-nitrophenyl)ethanklthydroxysuccinimide fgure 2. Transmitied lignt Images or representative pr zebrans

éster photocleavagl)e IinkerrzPL).yg:hordin pl)é\ys s)éveral important embryos. (A) Uninjected embryos UV-iradiated at 3 hpf for 8 min
8 . . ” . developed normally. (B) Injection with 0.5 mM caged PNA-chd or caged

roles during zebrafish embryonic development, including dorsal- pna-boz had no effect in the dark. Embryo shown was injected with caged

ventral patterning! UV cleavage of caged PNA-chd{ > 90°C) PNA-chd; an embryo injected with caged PNA-boz is shown in Figure S7.

yielded the less stable PNA-chd/sRNA dupléx, (= 70 °C). In (C) Embryos microinjected with 0.1 mM PNA-chd exhibited “no chordin”

this form, it was anticipated that PNA-chd would bind comple- P?gf;]o?’l)e- ('Dt?]'”je‘?tioh” V‘(’;tho-ﬁ th Cag‘?CE‘)Pé\‘At;Chd and UV ,i"fidij“iqt“h

; ; ; al pf gave the “no chordin” phenotype. mbryos microinjected wi

meg(t)?]?r/glh Oer)?;)nerr]ijrsgrﬁsar;iobvl\?ec(lj( F:]rgtedlir;fz?'/enrt]rgizls.betvveen UV- 0.5 mM PNA-boz exhibited “no bozozok” phenotype. (F) Injection with

. . . . . ) 0.5 mM caged PNA-boz and 8 min UV irradiation at 2 hpf gave the “no

irradiated and non-irradiated zebrafish embryos (Figure 2A).  pozozok” phenotype.

Ninety-five percent of embryos injected with native PNA-chd

showed a shortened tail and reduced brain characteristic of theexperiments,n = 90; Figure 2C). Lower than 100% antisense

chordino (no chordin) phenotyge at 24 hpf (average of three  activity was due to small variations in microinjection volume.

500 um
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caged PNA-boz inj.

Embryos injectetf with caged PNA-chd (average of three experi- PNA-boz inj.
-uv +UV

ments,n = 150) were divided, with one dish kept in the dark, the - - . -
other irradiated for 8 miA? 85% of embryos that remained in the
dark appeared completely normal at 24 hpf (Figure 2B), indicating
that the conjugated sRNA strand blocked binding of PNA-chd to P
target mMRNA The other 15% of embryos showed a nhibrdino
phenotype at 24 hpf. This was likely caused by features of the caged
PNA-chd, such as rRNA quadruplex structure, which reduced the rigure 3. Effect of PNA-boz ongoosecoidnRNA levels in the dorsal
blocking effects. Trace amounts of PNA-chd may also have organizer at 6 hpf. (A) Uninjected wild-type embryos shovgstin the
contributed to this result. Photoactivation of caged PNAlghd organizer (black stain, identified with arrow) in the organizer (identified
produced thehordinophenotype in 81% of embryos (Figure 2D). with arrow). (B) Injection of PNA-boz resulted in loss géc (C) Injection
As expected when chordin is down-regulatéthese embryos also of caged PNA-boz did not affegscexpression. (D) UV activation of caged
. . PNA-boz at 2 hpf caused reduction géc mRNA levels.

showed greatly reduced expression of the getx@ (Figure S1). h d PNAs. UV liaht efficientl tored anti tivity. B
The high thermal stability of the PNA-chd/sRNA duplex contributed charge S- ight efliciently restored antisense ac |\(|ty. y
to the lack of achordino phenotype in 19% of the irradiated this st_ratt_egy of conditional repression, we plan to vary protein levels
embryos. Photocleavage occurring within 8 min in buffer and duantitatively throughout the embryo by UV laser.
zebrafish was cor)firmed by gel electrophoresis using fluorescently  Acknowledgment. Support to I.J.D. came from a Camille and
labeled PNA conjugates. Henry Dreyfus Teacher-Scholar Award and UPenn Institutes of

We investigated phenotypic differences between embryos con- Genomics and Medicine and Engineering. E.S.W. was supported
taining uncaged PNA-chd or native PNA-chd. Photoactivation of py NIH grants R01 HD39272 and R01 DC03080. Jeffery Saven

caged PNA-chd gave an equilibrium between PNA-Chd/sRNA provided a fluorometer. Adam Peritz synthesized modifie@®le-
(inactive) and PNA-chd/mRNA (active) duplex forms, which was RNA.

assayed in a molecular beacon experiment (Supporting Information).
These results were validated with zebrafish dassponse experi-
ments which showed that phenotypes were equalized by injecting
5-fold less native PNA-chd (0.1 mM, Figure 2C) than caged PNA-
chd (0.5 mM solution), followed by UV irradiation (Figure 2D).
Caged PNA-chd blocked chordin expression in a light- and
concentration-dependent manner.

To test the specificity of caged ncPNA, we targeted a second
gene,bozozokwith important roles in organizer formation during
early zebrafish developmehtAn 18-mer ncPNA was previously
identified forbozozokhat produced definitive gene knockdowi.

This PNA-boz sequence was attached via PL to an 8-mer sense

uninjected

Supporting Information Available: Sequences, synthesis, char-
acterization, and use of caged ncPNA. This material is available free
of charge via the Internet at http:/pubs.acs.org.
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In summary, we succeeded in regulating two developmentally
important genes in zebrafish embryos using caged negatively
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